Quantification of [11C]ORM-13070 PET (draft)

[11C]ORM-13070

[11C]ORM-13070, (1-[(S)-1-(2,3-dihydrobenzo[1,4]dioxin-2-yl)methyl]-4-(3-11C-methoxymethylpyridin-2-yl)-piperazine), is a selective PET tracer for the α2C adrenoceptor subtype (Arponen et al., 2014). It can be produced with high specific activity, and it readily penetrates the blood-brain barrier (BBB), unlike the previously developed α2C-specific PET tracers (Arponen et al., 2014).

Kinetics in the rat and mouse brain is very fast, with the peak radioactivity at about 1-2 min after tracer injection (Arponen et al., 2014). Also in human brain the peak was observed during the first 2-3 minutes (Luoto et al., 2014).

α2C-AR

In the brain, the highest densities of α2C adrenoceptors (α2C-AR, ADRA2C) are found in the ventral and dorsal striatum, and the distribution is well conserved between rodents and humans (Scheinin et al., 1994; Holmberg et al., 2003; Fagerholm et al., 2008). Significant proportion of α2C-ARs are located intracellularly in Golgi compartments, and can be recycled from/to the plasma membrane, depending on agonist (noradrenaline) or other stimulation (Chotani and Flavahan, 2011; Jahnsen and Uhlén, 2013).

[11C]ORM-13070 can also be used to detect changes in synaptic noradrenaline levels (Finnema et al., 2015; Lehto et al., 2016).

Radioactive metabolites of [11C]ORM-13070

Two polar radioactive metabolites were detected in rat plasma, M1 in higher fractions and M2 in low fractions (Arponen et al., 2014; Luoto et al., 2014). In the rodents, at 10 min p.i. only 1/3 of the plasma radioactivity was due to the parent tracer, but in the striatum about 90% and in cerebellar cortex about 80% was still parent tracer (Arponen et al., 2014). In humans the metabolism was somewhat slower, at 10 min almost half of the radioactivity in the plasma was still due to the parent tracer (Luoto et al., 2014). Hill type function can be fitted to the plasma fraction curves, to calculate plasma TACs of parent tracer, M1, and M2 (Luoto et al., 2014).

Only M1 was observed in the brain (Arponen et al., 2014), suggesting that M1 can pass the BBB, but M2 cannot or its distribution volume in the brain is very small. M1 penetrates red blood cell (RBC) membrane, but parent tracer does not, and the level of the RBC-to-plasma ratio suggests that also M2 cannot pass RBC membranes (Luoto et al., 2014). Hill type function can be used to fit the RBC-to-plasma ratio curve (Luoto et al., 2014).

Radioactive metabolites could not be detected with HPLC-MS method, suggesting that both are volatile compounds with small molecular weight (Arponen et al., 2014). Thus the radioactive metabolites should not have any specific binding to α2C or other receptors. Demethylation is the main metabolic route of ORM-13070, and in case of [11C]ORM-13070 the -O-CH3 group contains the 11C label. It can be speculated that labeled metabolites are [11C]methanol, [11C]formaldehyde, [11C]formate or some of their further metabolic products.

Elimination of 11C radioactivity in rodents and humans seems to happen through biliary excretion and gastrointestinal tract (Arponen et al., 2014; Luoto et al., 2014).

Binding to plasma proteins decreased over time (Arponen et al., 2014), suggesting that [11C]ORM-13070 binds to plasma proteins, but its radioactive metabolites do not. In plasma of healthy humans 95% of [11C]ORM-13070 was bound to plasma proteins (Luoto et al., 2014).

Reference region

Cerebellar cortex can be used as reference region in data analysis, because it is practically devoid of α2C-AR in mice, rats, and humans (Scheinin et al., 1994; Winzer-Serhan et al., 1997; Holmberg et al., 2003; Schambra et al., 2005; Fagerholm et al., 2008).


See also:



References:

Arponen E, Helin S, Marjamäki P, Grönroos T, Holm P, Löyttyniemi E, Någren K, Scheinin M, Haaparanta-Solin M, Sallinen J, Solin O. A PET Tracer for brain α2C adrenoceptors, 11C-ORM-13070: radiosynthesis and preclinical evaluation in rats and knockout mice. J Nucl Med. 2014 (in press).

Chotani MA, Flavahan NA. Intracellular α2C-adrenoceptors: storage depot, stunted development or signaling domain? Biochim Biophys Acta 2011; 1813(8): 1495-1503.

Fagerholm V, Rokka J, Nyman L, Sallinen J, Tiihonen J, Tupala E, Haaparanta M, Hietala J. Autoradiographic characterization of α2C-adrenoceptors in the human striatum. Synapse 2008; 62(7): 508-515.

Finnema SJ, Varnäs K, Stepanov V, Varrone A, Gulyás B, Arponen E, Helin S, Solin O, Haaparanta M, Sallinen J, Ingman K, Scheinin M, Farde L, Halldin C. Amphetamine decreases binding of the novel α2C-adrenoreceptor radioligand [11C]ORM-13070 in monkey brain. Neuroimage 2010; 52(Suppl 1): S61-S62.

Holmberg M, Scheinin M, Kurose H, Miettinen R. Adrenergic α2C-receptors reside in rat striatal GABAergic projection neurons: comparison of radioligand binding and immunohistochemistry. Neuroscience 1999; 93(4): 1323-1333.

Holmberg M, Fagerholm V, Scheinin M. Regional distribution of α2C-adrenoceptors in brain and spinal cord of control mice and transgenic mice overexpressing the α2C-subtype: an autoradiographic study with [3H]RX821002 and [3H]rauwolscine. Neuroscience 2003; 117(4): 875-898.

Jahnsen JA, Uhlén S. The C-terminal half of the α2C-adrenoceptors determines the receptor’s membrane expression level and drug selectivity. Naunyn-Schmiedeberg’s Arch Pharmacol. 2013; 386: 1031–1040.

Jakobsen S, Pedersen K, Smith DF, Jensen SB, Munk OL, Cumming P. Detection of α2-adrenergic receptors in brain of living pig with 11C-yohimbine. J Nucl Med. 2006; 47(12): 2008-2015.

Kawamura K, Akiyama M, Yui J, Yamasaki T, Hatori A, Kumata K, Wakizaka H, Takei M, Nengaki N, Yanamoto K, Fukumura T, Zhang MR. In vivo evaluation of limiting brain penetration of probes for α2C-adrenoceptor using small-animal positron emission tomography. ACS Chem Neurosci. 2010; 1(7): 520-528.

Landau AM, Doudet DJ, Jakobsen S. Amphetamine challenge decreases yohimbine binding to α2 adrenoceptors in Landrace pig brain. Psychopharmacology (Berl). 2012; 222(1): 155-163.

Lehto J, Virta J, Oikonen V, Roivainen A, Luoto P, Arponen E, Helin S, Hietamäki J, Holopainen A, Kailajärvi M, Peltonen J, Rouru J, Sallinen J, Virtanen K, Volanen I, Scheinin M, Rinne J. Test-retest reliability of 11C-ORM-13070 in PET imaging of α2C-adrenoceptors in vivo in the human brain. Eur J Nucl Med Mol Imaging 2015; 42(1): 120-127.

Lehto J, Hirvonen M, Johansson J, Kemppainen J, Luoto P, Naukkarinen T, Oikonen V, Arponen E, Rouru J, Sallinen J, Scheinin H, Vuorilehto L, Finnema S, Halldin C, Rinne J, Scheinin M. Validation of [11C]ORM-13070 as a PET tracer for α2C-adrenoceptors in the human brain. Synapse 2015 (in press).

Luoto P, Suilamo S, Oikonen V, Arponen E, Helin S, Herttuainen J, Hietamäki J, Holopainen A, Kailajärvi M, Peltonen JM, Rouru J, Sallinen J, Scheinin M, Virta J, Virtanen K, Volanen I, Roivainen A, Rinne JO. 11C-ORM-13070, a novel PET ligand for brain α2C-adrenoceptors: radiometabolism, plasma pharmacokinetics, whole-body distribution and radiation dosimetry in healthy men. Eur J Nucl Med Mol Imaging 2014 (in press).

Marthi K, Bender D, Gjedde A, Smith DF. [11C]Mirtazapine for PET neuroimaging: radiosynthesis and initial evaluation in the living porcine brain. Eur Neuropsychopharmacol. 2002; 12(5): 427-432.

Munk OL, Smith DF. PET kinetics of radiolabeled antidepressant, [N-methyl-11C]mirtazapine, in the human brain. EJNMMI Res. 2011; 1(1):36.

Prinster SC, Holmqvist TG, Hall RA. α2C-adrenergic receptors exhibit enhanced surface expression and signaling upon association with β2-adrenergic receptors. J Pharmacol Exp Ther. 2006; 318(3): 974-981.

Sallinen J, Höglund I, Engström M, Lehtimäki J, Virtanen R, Sirviö J, Wurster S, Savola JM, Haapalinna A. Pharmacological characterization and CNS effects of a novel highly selective alpha2C-adrenoceptor antagonist JP-1302. Br J Pharmacol. 2007; 150(4): 391-402.

Sallinen J, Holappa J, Koivisto A, Kuokkanen K, Chapman H, Lehtimäki J, Piepponen P, Mijatovic J, Tanila H, Virtanen R, Sirviö J, Haapalinna A. Pharmacological characterisation of a structurally novel α2C-adrenoceptor antagonist ORM-10921 and its effects in neuropsychiatric models. Basic Clin Pharmacol Toxicol. 2013; 113(4): 239-249.

Schambra UB, Mackensen GB, Stafford-Smith M, Haines DE, Schwinn DA. Neuron specific α-adrenergic receptor expression in human cerebellum: implications for emerging cerebellar roles in neurologic disease. Neuroscience 2005; 135(2): 507-523.

Scheinin M, Lomasney JW, Hayden-Hixson DM, Schambra UB, Caron MG, Lefkowitz RJ, Fremeau RT Jr. Distribution of α2-adrenergic receptor subtype gene expression in rat brain. Brain Res Mol Brain Res. 1994; 21(1-2): 133-149.

Scheinin M, Sallinen J, Haapalinna A. Evaluation of the α2C-adrenoceptor as a neuropsychiatric drug target studies in transgenic mouse models. Life Sci. 2001; 68(19-20): 2277-2285.

Scheinin M, Hirvonen MM, Johansson J, Kemppainen J, Lehto J, Lovro Z, Luoto P, Oikonen V, Naukkarinen T, Rouru J, Sallinen J, Scheinin H, Vuorilehto L, Finnema SJ, Halldin C, Rinne JO. Evaluation of 11C-ORM-13070 as a PET tracer for α2C-adrenoceptors in the human brain. In: Eiden L, ed. Catecholamine Research in the 21st Century: Abstracts and Graphical Abstracts, 10th International Catecholamine Symposium, 2012. Academic Press, 2013: 162.

Smith DF, Dyve S, Minuzzi L, Jakobsen S, Munk OL, Marthi K, Cumming P. Inhibition of [11C]mirtazapine binding by α2-adrenoceptor antagonists studied by positron emission tomography in living porcine brain. Synapse 2006; 59(8): 463-471.

Smith DF, Stork BS, Wegener G, Jakobsen S, Bender D, Audrain H, Jensen SB, Hansen SB, Rodell A, Rosenberg R. Receptor occupancy of mirtazapine determined by PET in healthy volunteers. Psychopharmacology (Berl). 2007; 195(1): 131-138.

Winzer-Serhan UH, Raymon HK, Broide RS, Chen Y, Leslie FM. Expression of α2 adrenoceptors during rat brain development - II. α2C messenger RNA expression and [3H]rauwolscine binding. Neuroscience 1997; 76(1): 261-272.




Tags: ,


Created at: 2014-06-24
Updated at: 2017-10-10
Written by: Vesa Oikonen