Quantification of [11C]ORM-13070 PET


[11C]ORM-13070 is a selective antagonist radioligand for the α2C adrenoceptor subtype (Arponen et al., 2010, 2010b, and 2014). It can be produced with high specific activity, and it readily penetrates the blood-brain barrier (BBB), unlike the previously developed α2C-specific PET tracers (Arponen et al., 2014). The effective radiation dose is in the same range as that of other 11C-labelled brain receptor radiopharmaceuticals (Luoto et al., 2014). [11C]ORM-13070 can be used to assess the α2C-AR density with good repeatability in the high-binding regions (Scheinin et al., 2013; Lehto et al., 2015a) and the adrenoceptor occupancy in drug development (Lehto et al., 2015b), and to detect increase in synaptic noradrenaline levels (Finnema et al., 2015; Lehto et al., 2015c and 2016).

Kinetics of [11C]ORM-13070 in the rat and mouse brain is very fast, with the peak radioactivity at about 1-2 min after tracer injection (Arponen et al., 2014). Also in human brain the peak was observed during the first 2-3 minutes (Luoto et al., 2014).

In the brain, the highest densities of α2C adrenoceptors (α2C-AR, ADRA2C) are found in the ventral and dorsal striatum, and the distribution is well conserved between rodents and humans (Scheinin et al., 1994; Holmberg et al., 2003; Fagerholm et al., 2008). Significant proportion of α2C-ARs are located intracellularly in Golgi compartments, and can be recycled from/to the plasma membrane, depending on agonist (noradrenaline) or other stimulation (Chotani and Flavahan, 2011; Jahnsen and Uhlén, 2013).

Radioactive metabolites of [11C]ORM-13070

Two polar radioactive metabolites were detected in rat plasma, M1 in higher fractions and M2 in low fractions (Arponen et al., 2014; Luoto et al., 2014). In the rodents, at 10 min p.i. only 1/3 of the plasma radioactivity was due to the parent tracer, but in the striatum about 90% and in cerebellar cortex about 80% was still parent tracer (Arponen et al., 2014). In humans the metabolism was somewhat slower, at 10 min almost half of the radioactivity in the plasma was still due to the parent tracer (Luoto et al., 2014). Dexmedetomidine affects the fraction of parent tracer in plasma (Lehto et al., 2016). Hill type function can be fitted to the plasma fraction curves, to calculate plasma TACs of parent tracer, M1, and M2 (Luoto et al., 2014).

Only M1 was observed in the brain (Arponen et al., 2014), suggesting that M1 can pass the BBB, but M2 cannot or its distribution volume in the brain is very small. M1 penetrates red blood cell (RBC) membrane, but parent tracer does not, and the level of the RBC-to-plasma ratio suggests that also M2 cannot pass RBC membranes (Luoto et al., 2014). Hill type function can be used to fit the RBC-to-plasma ratio curve (Luoto et al., 2014).

Radioactive metabolites could not be detected with HPLC-MS method, suggesting that both are volatile compounds with small molecular weight (Arponen et al., 2014). Thus the radioactive metabolites should not have any specific binding to α2C or other receptors. Demethylation is the main metabolic route of ORM-13070, and in case of [11C]ORM-13070 the -O-CH3 group contains the 11C label. It can be speculated that label-carrying metabolites are [11C]methanol, [11C]formaldehyde, [11C]formate or some of their further metabolic products. Small polar radiometabolites can markedly decrease the signal-to-background ratio (Johansen et al., 2017).

Elimination of 11C radioactivity in rodents and humans seems to happen through biliary excretion and gastrointestinal tract (Arponen et al., 2014; Luoto et al., 2014).

Binding to plasma proteins decreased over time (Arponen et al., 2014), suggesting that [11C]ORM-13070 binds to plasma proteins, but its radioactive metabolites do not. In plasma of healthy humans 95% of [11C]ORM-13070 was bound to plasma proteins (Luoto et al., 2014).

Reference region

Cerebellar cortex can be used as reference region in data analysis, because it is practically devoid of α2C-AR in mice, rats, and humans (Scheinin et al., 1994; Winzer-Serhan et al., 1997; Holmberg et al., 2003; Schambra et al., 2005; Fagerholm et al., 2008).

Ratio method

A robust index of the concentration of available α2C-ARs can be calculated as the ratio of radioactivity concentrations in the region-of-interest and reference region. The ratio minus one ("bound per free", B/F) correlates with binding potential, and can be easily calculated pixel-by-pixel to produce parametric binding maps. Time range 5-30 min or 10-20 min after administration can be used for the ratio calculation (Lehto et al., 2015a, Lehto et al., 2015b, and Lehto et al., 2016).

See also:


Arponen E, Helin S, Marjamäki P, Grönroos T, Holm P, Löyttyniemi E, Någren K, Scheinin M, Haaparanta-Solin M, Sallinen J, Solin O. A PET Tracer for brain α2C adrenoceptors, 11C-ORM-13070: radiosynthesis and preclinical evaluation in rats and knockout mice. J Nucl Med. 2014; 55(7): 1171-1177. doi: 10.2967/jnumed.113.135574.

Finnema SJ, Hughes ZA, Haaparanta-Solin M, Stepanov V, Nakao R, Varnäs K, Varrone A, Arponen E, Marjamäki P, Pohjanoksa K, Vuorilehto L, Babalola PA, Solin O, Grimwood S, Sallinen J, Farde L, Scheinin M, Halldin C. Amphetamine decreases α2C-adrenoceptor binding of [11C]ORM-13070: a PET study in the primate brain. Int J Neuropsychopharmacol. 2014; 18(3): pyu081. doi: 10.1093/ijnp/pyu081.

Finnema SJ, Varnäs K, Stepanov V, Varrone A, Gulyás B, Arponen E, Helin S, Solin O, Haaparanta M, Sallinen J, Ingman K, Scheinin M, Farde L, Halldin C. Amphetamine decreases binding of the novel α2C-adrenoreceptor radioligand [11C]ORM-13070 in monkey brain. Neuroimage 2010; 52(Suppl 1): S61-S62. doi: 10.1016/j.neuroimage.2010.04.047.

Holmberg M, Scheinin M, Kurose H, Miettinen R. Adrenergic α2C-receptors reside in rat striatal GABAergic projection neurons: comparison of radioligand binding and immunohistochemistry. Neuroscience 1999; 93(4): 1323-1333. doi: 10.1016/s0306-4522(99)00260-2.

Jakobsen S, Pedersen K, Smith DF, Jensen SB, Munk OL, Cumming P. Detection of α2-adrenergic receptors in brain of living pig with 11C-yohimbine. J Nucl Med. 2006; 47(12): 2008-2015.

Kawamura K, Akiyama M, Yui J, Yamasaki T, Hatori A, Kumata K, Wakizaka H, Takei M, Nengaki N, Yanamoto K, Fukumura T, Zhang MR. In vivo evaluation of limiting brain penetration of probes for α2C-adrenoceptor using small-animal positron emission tomography. ACS Chem Neurosci. 2010; 1(7): 520-528.

Landau AM, Doudet DJ, Jakobsen S. Amphetamine challenge decreases yohimbine binding to α2 adrenoceptors in Landrace pig brain. Psychopharmacology (Berl). 2012; 222(1): 155-163.

Lehto J, Virta J, Oikonen V, Roivainen A, Luoto P, Arponen E, Helin S, Hietamäki J, Holopainen A, Kailajärvi M, Peltonen J, Rouru J, Sallinen J, Virtanen K, Volanen I, Scheinin M, Rinne J. Test-retest reliability of 11C-ORM-13070 in PET imaging of α2C-adrenoceptors in vivo in the human brain. Eur J Nucl Med Mol Imaging 2015a; 42(1): 120-127. doi: 10.1007/s00259-014-2899-z.

Lehto J, Hirvonen M, Johansson J, Kemppainen J, Luoto P, Naukkarinen T, Oikonen V, Arponen E, Rouru J, Sallinen J, Scheinin H, Vuorilehto L, Finnema S, Halldin C, Rinne J, Scheinin M. Validation of [11C]ORM-13070 as a PET tracer for α2C-adrenoceptors in the human brain. Synapse 2015b; 69(3): 172-181. doi: 10.1002/syn.21798.

Lehto J, Johansson J, Vuorilehto L, Luoto P, Arponen E, Scheinin H, Rouru J, Scheinin M. Sensitivity of [11C]ORM-13070 to increased extracellular noradrenaline in the CNS - a PET study in human subjects. Psychopharmacology (Berl) 2015c; 232(21-22): 4169-4178. doi: 10.1007/s00213-015-3941-y.

Lehto J, Scheinin A, Johansson J, Marjamäki P, Arponen E, Scheinin H, Scheinin M. Detecting a dexmedetomidine-evoked reduction of noradrenaline release in the human brain with the alpha2C-adrenoceptor PET ligand [11C]ORM-13070. Synapse 2016; 70(2): 57-65. doi: 10.1002/syn.21872.

Luoto P, Suilamo S, Oikonen V, Arponen E, Helin S, Herttuainen J, Hietamäki J, Holopainen A, Kailajärvi M, Peltonen JM, Rouru J, Sallinen J, Scheinin M, Virta J, Virtanen K, Volanen I, Roivainen A, Rinne JO. 11C-ORM-13070, a novel PET ligand for brain α2C-adrenoceptors: radiometabolism, plasma pharmacokinetics, whole-body distribution and radiation dosimetry in healthy men. Eur J Nucl Med Mol Imaging 2014; 41(10): 1947-1956. doi: 10.1007/s00259-014-2782-y.

Marthi K, Bender D, Gjedde A, Smith DF. [11C]Mirtazapine for PET neuroimaging: radiosynthesis and initial evaluation in the living porcine brain. Eur Neuropsychopharmacol. 2002; 12(5): 427-432.

Munk OL, Smith DF. PET kinetics of radiolabeled antidepressant, [N-methyl-11C]mirtazapine, in the human brain. EJNMMI Res. 2011; 1(1):36.

Prinster SC, Holmqvist TG, Hall RA. α2C-adrenergic receptors exhibit enhanced surface expression and signaling upon association with β2-adrenergic receptors. J Pharmacol Exp Ther. 2006; 318(3): 974-981.

Sallinen J, Höglund I, Engström M, Lehtimäki J, Virtanen R, Sirviö J, Wurster S, Savola JM, Haapalinna A. Pharmacological characterization and CNS effects of a novel highly selective alpha2C-adrenoceptor antagonist JP-1302. Br J Pharmacol. 2007; 150(4): 391-402.

Sallinen J, Holappa J, Koivisto A, Kuokkanen K, Chapman H, Lehtimäki J, Piepponen P, Mijatovic J, Tanila H, Virtanen R, Sirviö J, Haapalinna A. Pharmacological characterisation of a structurally novel α2C-adrenoceptor antagonist ORM-10921 and its effects in neuropsychiatric models. Basic Clin Pharmacol Toxicol. 2013; 113(4): 239-249. doi: 10.1111/bcpt.12090.

Scheinin M, Sallinen J, Haapalinna A. Evaluation of the α2C-adrenoceptor as a neuropsychiatric drug target studies in transgenic mouse models. Life Sci. 2001; 68(19-20): 2277-2285. doi: 10.1016/s0024-3205(01)01016-5.

Scheinin M, Hirvonen MM, Johansson J, Kemppainen J, Lehto J, Lovro Z, Luoto P, Oikonen V, Naukkarinen T, Rouru J, Sallinen J, Scheinin H, Vuorilehto L, Finnema SJ, Halldin C, Rinne JO. Evaluation of 11C-ORM-13070 as a PET tracer for α2C-adrenoceptors in the human brain. In: Eiden L, ed. Catecholamine Research in the 21st Century: Abstracts and Graphical Abstracts, 10th International Catecholamine Symposium, 2012. Academic Press, 2013: 162.

Smith DF, Dyve S, Minuzzi L, Jakobsen S, Munk OL, Marthi K, Cumming P. Inhibition of [11C]mirtazapine binding by α2-adrenoceptor antagonists studied by positron emission tomography in living porcine brain. Synapse 2006; 59(8): 463-471.

Smith DF, Stork BS, Wegener G, Jakobsen S, Bender D, Audrain H, Jensen SB, Hansen SB, Rodell A, Rosenberg R. Receptor occupancy of mirtazapine determined by PET in healthy volunteers. Psychopharmacology (Berl). 2007; 195(1): 131-138.

Tags: ,

Updated at: 2020-02-26
Created at: 2014-06-24
Written by: Vesa Oikonen