Atherosclerotic renal artery stenosis

Atherosclerotic renal artery stenosis (ARAS) is an important contributor to renal failure and secondary hypertension. ARAS activates RAAS, oxidative stress, inflammation, reduced microvasculature, and thickening of the small blood vessels. Cortical and medullary blood flow is reduced in ARAS patients. Localized cortical hypoxia may contribute to the pathogenesis, although kidneys generally are resistant to substantial reductions in blood flow, and in moderate renal artery stenosis the oxygenation level in cortex and medulla is preserved (Eirin & Lerman, 2013; Kwon and Lerman, 2015). Inflammation initially induces angiogenesis, but the new vessels are nonfunctional and leaky, promoting additional infiltration of white blood cells into the interstitial space (Eirin & Lerman, 2013). Activated RAAS stimulates production of extracellular matrix constituents, and prolonged RAAS activation may lead to renal fibrosis. In experimental renal artery stenosis the fibrinogenic factors, including TGF-β, PAI-1, and TIMP-1, are upregulated. TGF-β released from the stenotic kidneys may even be one cause of cardiac injury. The normal function of mitochondria leads to production of reactive oxygen species (ROS), and in the kidneys, the medullary thick ascending limb of Henle is the predominant site of superoxide production. Angiotensin II increases ROS generation, and induces apoptosis. Endothelial NO production is reduced, and released NO is inactivated by ROS.

Statins, ACE inhibitors (including enalapril and imidapril), and angiotensin receptor 1 blockers (ARBs) may slow down the loss of renal function. Enalapril and imidapril also inhibit matrix metalloproteinases.

Renal artery revascularization can sometimes restore kidney function, but randomized clinical studies have shown that revascularization offers no benefit compared to medical treatment (Kwon and Lerman, 2015). The inflammation in ARAS kidneys continues after revascularization. Renal blood flow and fibrosis is incompletely restored by angioplasty in swine model of renal artery stenosis (Favreau et al., 2010). Currently it is not known how to identify the sub-group of patients that would benefit from revascularization therapy; larger parenchymal volume to GFR ratio may be one such indicator (Chrysochou et al., 2017). One possibility is that stenotic kidney should be treated at an earlier phase (de Leeuw et al., 2018).


See also:



References:

Alpern RJ, Caplan MJ, Moe OW (eds.): Seldin and Giebisch’s The Kidney - Physiology and Pathophysiology, 5th ed., Academic Press, 2013, ISBN: 978-0-12-381462-3.

Ashley C, Morlidge C (eds.): Introduction to Renal Therapeutics. Pharmaceutical Press, 2008, ISBN: 978-0-85369-688-9.

Chade AR. Renal vascular structure and rarefaction. Compr Physiol. 2013; 3(2): 817-831.

Edwards A, Silldforff EP, Pallone TL. The renal medullary microcirculation. Front Biosci. 2000; 5: E36-E52.

Fogo AB, Cohen AH, Jennette JC, Bruijn JA, Colvin RB: Fundamentals of Renal Pathology. Springer, 2006.

Fogo AB, Kashgarian M: Diagnostic Atlas of Renal Pathology, 3rd ed., Elsevier, 2017. ISBN: 978-0-323-39053-8.

Krishnan N, Perazella MA. The role of PET scanning in the evaluation of patients with kidney disease. Adv Chronic Kidney Dis. 2017; 24(3): 154-161. doi: 10.1053/j.ackd.2017.01.002.

Koivuviita N: Vascular function in chronic kidney disease and in renovascular disease. Thesis, 2011, ISBN 978-951-29-4590-0.

Lerman LO, Textor SC (eds.): Renal Vascular Disease. Springer, 2014. doi: 10.1007/978-1-4471-2810-6.



Tags: , ,


Created at: 2017-02-23
Updated at: 2018-06-26
Written by: Vesa Oikonen