Model equations for myocardial perfusion studies with $[^{15}\text{O}]\text{H}_2\text{O}$ PET

The myocardial blood flow (MBF) model for $[^{15}\text{O}]\text{H}_2\text{O}$ PET studies presented here is mainly developed and validated by Hidehiro Iida (Iida et al., 1991, 1992; Araujo et al., 1991; Watabe et al., 2005).

Table 1. Definition of symbols:

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>$C_i(t)$</td>
<td>True myocardial tissue radioactivity concentration at time t; radioactivity of perfusable myocardium [kBq ml$^{-1}$]</td>
</tr>
<tr>
<td>$a(t)$</td>
<td>True input function; radioactivity concentration in (coronary) arterial blood [kBq ml$^{-1}$]</td>
</tr>
<tr>
<td>$ROI(t)$</td>
<td>Time-activity curve of radioactivity of region-of-interest (ROI) which is drawn on the left ventricular (LV) myocardial region [kBq ml$^{-1}$]</td>
</tr>
<tr>
<td>$LV(t)$</td>
<td>Time-activity curve of radioactivity of ROI which is drawn on the LV cavity [kBq ml$^{-1}$]</td>
</tr>
<tr>
<td>f</td>
<td>Regional MBF; the blood flow of perfusable tissue [ml min$^{-1}$ ml$^{-1}$]</td>
</tr>
<tr>
<td>p</td>
<td>Myocardium-to-blood partition coefficient of water [ml ml$^{-1}$]</td>
</tr>
<tr>
<td>α</td>
<td>Tissue fraction; volume of perfusable tissue in ROI [ml ml$^{-1}$]</td>
</tr>
<tr>
<td>V_a</td>
<td>Arterial blood volume; volume of arterial vascular space (including the spill-over from the chamber) in ROI [ml ml$^{-1}$]</td>
</tr>
<tr>
<td>β</td>
<td>Recovery coefficient of left-ventricular ROI (0<$\beta$$\leq$1)</td>
</tr>
<tr>
<td>λ</td>
<td>Physical decay coefficient of ^{15}O [s$^{-1}$]</td>
</tr>
</tbody>
</table>

In contrary to the original model publications, in this report all masses are converted to volumes and radioactivity concentrations are given in units [kBq/ml]. In the original articles, $p=0.91$ ml/g was assumed; in this presentation this is multiplied by the density of myocardium, $\rho=1.04$ g/ml, giving $p=0.9464$ ml/ml. The spill-over fraction of tissue radioactivity into LV ROI, γ, is replaced in the equations with $1-\beta$; this is an assumption in the original model ($\beta+\gamma=1$).

The perfusion calculations are based on three equations:

$$C_i(T) = f \int_0^T a(t) dt - \frac{p}{\alpha} \int_0^T C_i(t) dt \quad (1)$$

$$ROI(T) = \alpha C_i(T) + V_a a(T) \quad (2)$$

$$LV(T) = \beta a(T) + (1 - \beta) C_i(T) \quad (3)$$

To estimate the model parameters, f, α, and V_a, the model is at first fitted only to the data from a large ROI, covering the whole LV myocardium. With those parameters and the curves of large ROI and LV cavity, the arterial blood curve, $a(t)$, is calculated, and it is then used to estimate the parameters of other smaller myocardial ROIs.
From Eqs. (2) and (3), the myocardial tissue activity and its integral can be solved:

\[
C_i(T) = \left(ROI(T) - \frac{V_a}{\beta} LV(T) \right) \left(\alpha - \frac{V_a(1-\beta)}{\beta} \right)
\]
(4)

\[
\int_0^T C_i(t)\,dt = \left(\int_0^T ROI(t)\,dt - \frac{V_a}{\beta} \int_0^T LV(t)\,dt \right) \left(\alpha - \frac{V_a(1-\beta)}{\beta} \right)
\]
(5)

The coronary arterial radioactivity can be solved from Eq. (3) and integrated to form Eq. (6):

\[
\int_0^T a(T)\,dt = \frac{1}{\beta} \left[\int_0^T LV(T)\,dt - \frac{1-\beta}{\beta} \int_0^T C_i(T)\,dt \right]
\]
(6)

Thereafter, the Eqs. (6), (4) and (5) can be substituted into Eq. (1) to solve the radioactivity concentration in the large myocardial ROI as a function of measured quantities only:

\[
ROI(t) = \frac{V_a}{\beta} LV(t) + f\left(\alpha + \frac{V_a}{p} \right) \int_0^T LV(t)\,dt - f\left(\frac{1}{p} + \frac{1-\beta}{\beta} \right) \int_0^T ROI(t)\,dt
\]
(7)

By replacing the coefficients with \(V_{fit} \), \(K_1 \) and \(k_2 \), the equation can be represented in the form of traditional two-compartmental model:

\[
\begin{align*}
V_{fit} & = \frac{V_a}{\beta} \\
K_1 & = f\left(\alpha + \frac{V_a}{p} \right) \\
k_2 & = f\left(\frac{1}{p} + \frac{1-\beta}{\beta} \right)
\end{align*}
\]
(8)

\[
ROI(T) = V_{fit} LV(T) + K_1 \int_0^T LV(t)\,dt - k_2 \int_0^T ROI(t)\,dt
\]
(9)

The parameters of Eq. (9) could be solved with multilinear regression analysis, which idea was first proposed by Blomqvist (1984). By applying linear interpolation and Kuwabara’s approach for partial solution of the differential equations (Kuwabara et al., 1993), the integral of regional radioactivity can be presented as in Eq. (10), and substituted in Eq. (9) to give Eq. (11):

\[
\begin{align*}
\int_0^T ROI(t)\,dt & = \int_0^{T-\Delta t} ROI(t)\,dt + \frac{\Delta t}{2} ROI(T-\Delta t) + \frac{\Delta t}{2} ROI(T) \\
& = V_{fit} LV(T) + K_1 \int_0^T LV(t)\,dt - k_2 \int_0^T ROI(t) + \frac{\Delta t}{2} ROI(T-\Delta t)
\end{align*}
\]
(10)

\[
ROI(T) = \frac{V_{fit} LV(T) + K_1 \int_0^T LV(t)\,dt - k_2 \int_0^T ROI(t) + \frac{\Delta t}{2} ROI(T-\Delta t)}{1 + \frac{\Delta t}{2} k_2}
\]
(11)
To calculate the arterial blood curve, the \(C_i(t) \) is first solved from Eq. (2) and substituted into Eq. (3). \textbf{Thereafter,} \(a(t) \) \textbf{can be solved} based on the curves of LV cavity and whole myocardium ROIs:

\[
a(T) = \frac{\alpha_{LV}(T) - (1 - \beta)ROI(T)}{\alpha_{LV} - V_a(1 - \beta)} \quad (12)
\]

To derive equations for the \textbf{smaller LV myocardial ROIs}, the tissue activity is as a first step solved from Eq. (2), and then integrated to give Eqs. (13) and (14):

\[
C_i(T) = (ROI(T) - V_a a(T))/\alpha \quad (13)
\]

\[
\int_0^T C_i(t)dt = \left(\int_0^T ROI(t)dt - V_a \int_0^T a(t)dt \right)/\alpha \quad (14)
\]

These can be substituted into Eq. (1) to give the regional myocardium radioactivity as a function of arterial blood radioactivity:

\[
ROI(T) = V_a a(T) + f \left(\alpha + \frac{V_a}{p} \right) \int_0^T a(t)dt - \frac{f}{p} \int_0^T ROI(t)dt \quad (15)
\]

Again, this can be represented in a form of two-compartmental model after the coefficients are replaced with \(V_{fit}, K_1 \) and \(k_2 \):

\[
\begin{cases}
V_{fit} = V_a \\
K_1 = f \left(\alpha + \frac{V_a}{p} \right) \\
k_2 = \frac{f}{p}
\end{cases} \quad (16)
\]

\[
ROI(T) = V_{fit} a(T) + K_1 \int_0^T a(t)dt - k_2 \int_0^T ROI(t)dt \quad (17)
\]

The parameters of Eq. (17) could be solved with multilinear regression analysis. By applying linear interpolation, the integral of regional radioactivity from Eq. (10) can be substituted into Eq. (17) to give Eq. (18) for smaller myocardial ROIs. Note that the parameters \(V_{fit}, K_1 \) and \(k_2 \) are different than in Eq. (11).

\[
ROI(T) = \frac{V_{fit} a(T) + K_1 \int_0^T a(t)dt - k_2 \int_0^{T-\Delta t} ROI(t) + \frac{\Delta t}{2} ROI(T - \Delta t)}{1 + \frac{\Delta t}{2} k_2} \quad (18)
\]

\textbf{When data is not corrected for physical decay}

In previous equations we assumed that all measured data was corrected for physical decay. If PET time frames are relatively long compared to the decay and transfer
constants, applying calculations for non-decay corrected data may produce more accurate results.

For non-decay corrected data, the decay constant (λ) must be included in the equation (1), leading to Eq. (19)

$$ C_i(T) = \int_{0}^{T} a(t)dt - \left(\frac{f}{p} + \lambda \right) \int_{0}^{T} C_i(t)dt \quad (19) $$

When proceeding as previously, we end up with Eq. (20) for large myocardial ROI, which replaces Eq. (7),

$$ ROI(t) = \frac{V_a}{\beta} LV(t) + \left[\frac{f}{\beta} \left(\alpha + \frac{V_a}{p} \right) + \lambda \frac{V_a}{\beta} \right] \int_{0}^{T} LV(t)dt - \left[f \left(\frac{1}{p} + \frac{1-\beta}{\beta} \right) + \lambda \right] \int_{0}^{T} ROI(t) \quad (20) $$

and with Eq. (21) for smaller myocardial ROIs to replace Eq. (15):

$$ ROI(T) = V_a a(T) + \left[f \left(\alpha + \frac{V_a}{p} \right) + \lambda V_a \right] \int_{0}^{T} a(t)dt - \left(\frac{f}{p} + \lambda \right) \int_{0}^{T} ROI(t)dt \quad (21) $$

Time delay

The MBF model assumes that time shifts between left ventricular (LV) cavity and the vessels supplying the myocardium are negligible. Time delay between the input curve obtained from the left ventricular (LV) cavity compared to that obtained in the aorta was found to be 0.25 ± 0.34 s under baseline conditions and 0.19 ± 0.23 s under hyperemic conditions (Herrero et al., 1994). This time shift may lead into biased model estimates, but the bias may still be smaller than if input curve would be obtained from aorta of if the LV cavity curve would be corrected for this time delay, because the LV curve is in absolute synchronization with the spill-over portion of the LV myocardial curve (Bacharach and Carson, 1994).

References

