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Graham’s plasma time-activity curve model

This document described the original Graham’s input function model [Graham, 1997],
its extension, and the mathematical equations required for simulating them. The
ODE:s are solved using the second-order Adams-Moulton method with trapezoidal
rule [Kuwabara et al., 1993].

Model description

Compartmental model
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Fig. A1-1. Original Grahams’s compartmental model (left), and the modification of it, which
includes a compartment for blood cells (right).

The structures of the compartmental models are described in Fig. A1-1, the variables
in Table A1-1, and the differential equations (1-4) are given below:

V,dC,(t)/dt = Input(t) - (PS, + GFR + PS; )X C , (t) + PS, X C,() + PS; X C,(1) (1)
V,dC,(t)/dt = PS,xC,(t)+ PS, xC,(t) - (PS, + PS,)x C,(?) 2)
V. dC, (t)/dt = PS, x C.(t)— PS, xC,(t) 3)
V,dC,(t)/dt = PS;xC ,(t)~ PS; X C () 4)



Simulation of bolus and infusion
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Fig. A1-2. Bolus injection (red) and infusion (red) simulated with the same parameters as in
Grahams’s study [Graham 1997]: H=0.815, k=11.2, Dur=0.0 (bolus) or Dur=1.0 (Infusion),
Delay=0.7052.

The equations for bolus input (5) and infusion (6) are:
Input(t) = { ,?( _De e Delay}
Hxe =) t> Delay
0 ,t < Delay
Input(t) =4 H X (1 - eik(f*D"l”y)) ,Delay >t > Delay + Dur ; (6)
H'xe *=Pear=bw) 4> Delay + Dur

©)



Table A1-1. Descriptions of the model parameters.

Gy Concentration of tracer in plasma kBg mL”

C. Concentration of tracer in blood cell fluid kBg mL”

Ci Concentration of tracer in interstitial fluid kBg mL”

C Concentration of tracer in tissue fluid kBg mL”

V, Volume of plasma mL mL”’

V. Volume of blood cell fluid mL mL”’

Vi Volume of interstitial fluid mL mL”

Vi Volume of tissue fluid mL mL”

PS; Permeability-surface area product (PS) for mL min”" mL”
exchange from V), to V;

PS, PS for exchange from V;to V; mL min”’ mL”’

PS; PS for exchange from V), to V. mL min”" mL”’

GFR Glomerular filtration rate mL min”" mL”

H Amount of activity infused per min kBq min”" mL”’

H’ H at the end of the infusion period; kBq min”" mL”
H’=H*(1-exp(-k*Dur))

k Time constant min”’

Delay Time before bolus reaches the measurement | min
point

Dur Duration of infusion; in bolus injection min

Dur=0

Solving differential equations

Original Graham’s model

The original Graham’s model can be derived from the extended model by setting the
parameters of the extension compartment (PS3, V) to zero.

Extended model

The integrated forms of the equations (1-3) are as follows, when the parts of the
extended model are excluded from those:




T T
V,C (T)= j Input(t)dt — (PS, + GFR + PS, )jcp (t)dt
0 ’ ’ 0
+PS, j C.(t)dt + PS, j C.(t)dt (7)
0 0

V.C.(T)= PS, chp(z)art—(zus1 +PS, )TICi(t)dt+PS2 cht(t)dt (8)

V,.C(T)= PS, [C,(H)dt—PS, [C,()at (9)
V.C(T)= PS, J-Cp(t)dt—PSs ICC(t)dt (10)

By applying the second-order Adams-Moulton method with trapezoidal rule, the
integral of radioactivity concentration in compartment # can be presented as in Eq.
(11), and the compartmental concentration can be solved as in Eq. (12); 4z is the
difference between sample collection times:

jc (t)dt = —c (T)-{T fc (z)dz+%c (T - At)J 11)

1 T—At A
Cy(T )— jC (t)dt — Ve ( jc (H)dt +— 5 C, (T - At)J (12)

Substitution of Eq. (11) into Eq. (10) gives the equation for C,.(7), and substitution of
Eq. (12) into Eq. (10) gives the equation for its integral (14), which is needed to solve
further equations:

PS, jc ()di - PS f fc (t)dt+tCC(T—At)}

C(T)=—>= (13)
V. +PS, At
2
T PS, A -y
J'Cc(t)dz—— jc (t)dt + { fc. (t)dt+—C (T - At)} (14)
0 V. +PS, 70 V. +PS, 7

In the same manner substitution of equations (11) and (12) into equation (9) gives the
expressions for Cy(7) and its integral:



T T—-At At
PS, j C.(t)dt - PS{ jct (de+—-C,(T - At)}
0

_ 0
C(T)= v (15)
V.+PS,—
2
A
, ps, 2, S A A
j C.(1)dt = —2At j C.(0)dt + —A{ jct (t)dt +—C (T - At)} (16)
i v+ Ps, v, +ps, L 2

Substitution of Eq. (16) into Eq. (8), and then substitution of Eq. (11), gives the
equation for Cy(7):

T
PS, jcp (t)dt
0

PS.V s
s+ P2 [C(ndi+ AL (r—an)
Vi+PS, 5 ) 5 2

PS.V =
| 2| [Coyde+ At C.(T-Ab)
I/t + PS2 % 0 2 (1 7)
PS,V, j

V,+ PS, ¥

Ci(T) = At
V. +2(PS1 +

Substitution of Eq. (12) and (16) into Eq. (8) gives the equation for C;(7) s integral:
At

P, jcp (t)dt
0

T—-At At
+V{ J‘Ci(t)dt+2Ci(T—At)}
0

pS. v, A T
+ [“j{ [, (dt+ Azt C (T - At)}
0

! V,+PS, %
jcl. (t)dt = 7 (18)
’ v+ 8 ps 4 PN

2 V,+PS, &

In the next step C,(7) is solved by substitution of Eq. (14) and (18) into Eq. (7), and
then substitution of Eq. (11):



T
J-Input(z‘)dt
0

PSV,V, + PS,PS, % (V, +V,) . PSV.
vy, +%(ViPS2 +V,PS, +%PS1PS2 +V,PS,) V. +PS, %

x{ jcp (0)dt+4C (T - At)}

- [GFR +

Ps,

PS,V.
V. +PS, %

T—At PSZVt% T—At
x|V, J'Ci(t)a’t+%Ci(T—At) T jC,(t)dt+%Ct(T—At)
0 t 22

V. +4(PS, + )

0

T-At
+PS3VC{ jcc(t)dz+gfcc(T—Az)}
0

V.+PS, 45
CP(T): At
V +5 GFR+ PSlVin+PS1PS27(Vi+Vt) 4 PS3VC
v V.V, +4%(V,PS, +V,PS, + 4 PS,PS, +V,PS,) V.+PS,%
i’ 2 i 2 t 1 2 1 2 t 2 c 32
Integral of input

The equations for bolus injection integral from time 0 to T is

T 0 , T < Delay

Input(t)dt =1 H (T—Delay 20
anu() ?(l_e—k(TDl})) , T > Delay (20)
and for infusion integral:

0 , T < Delay

T
j]npul(t)dt =< H(T — Delay) - % (1 — g (IPela) ) , Delay <T < Delay + Dur; (21)
0

H X Dur — %(1 — g XD g TDela-Dw) > Delgy + Dur
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