Turku PET Centre Modelling report TPCMOD0039 2009-04-08 Updated 2010-10-06 Chunlei Han, Vesa Oikonen

Model equations for myocardial perfusion studies with [1-¹¹C]Acetate PET

Symbol	Description	Unit
C ₁	Tracer concentration in myocardial region	kBq ml-1
Ca	Tracer concentration in blood without metabolite	kBq ml-1
C _m	Tracer concentration in blood including metabolite	kBq ml-1
K ₁	Tracer exchange rate	ml ml ⁻¹ min ⁻¹
k ₂	Tracer exchange rate	min ⁻¹
Va	Arterial blood volume; volume of arterial vascular space (including the spill-over from the chamber) in ROI	ml ml ⁻¹
f	Regional MBF	ml min ⁻¹ ml ⁻¹
Е	Extraction fraction	

1-tissue compartment model (1,2,3) is employed as:

$$\frac{dC_1}{dt} = K_1 C_a - k_2 C_1$$
$$C_{TET} = V_a C_m + (1 - V_a) C_1$$

E, f and K_1 are related as

$$E = 1 - 0.64e^{-1.2(\frac{t}{t_{1/2}})/f}$$

 $K_1 = E \times f$

Input function metabolite correction is performed by equation

$$C_a(t) = 0.91e^{-\ln 2\left(\frac{t}{t_{1/2}}\right)}C_m(t)$$

, where $t_{1/2} = 5.3$ min.

This model is implemented into TPClib.model and also in Carimas2. The program name is *HeartCl1AcetatePerfusion*.

The *HeartC11AcetatePerfusion* working flow is

Reference:

1. van den Hoff et al: [1-¹¹C]Acetate as a quantitative perfusion tracer in myocardial PET. J Nucl Me 2001; 42:1174-1182.

2. Timmer et al: Potential of [¹¹C] acetate for measuring myocardial blood flow: studies in normal subjects and patients with hypertrophic cardiomyopathy. J Nucl Cardio 2010; 17:264-75.

3. Sörensen et al: Simultaneous quantification of myocardial perfusion, oxidative metabolism, cardiac efficiency and pump function at rest and during supine bicycle exercise using 1-¹¹C-acetate PET – a pilot study Clin Physiol Funct Imaging (2010) 30, pp279–284.